
1

CYBEX-P Architecure & Deploy-
ment

1.1 Software Architecture

The CYBEX-P web application consists of several components that work in concert

to provide a comprehensive software experience. These include a Python/Django

back end and a React.js front end that communicate via a RESTful API. This web

application back end is not to be confused with the CYBEX-P back end, which

hosts the core API for querying the CYBEX-P database. The CYBEX-P back end

and related services are the subjects of other works; this Chapter focuses on the

architecture and design of the web application only. Figure 1.1 is a system context

diagram that visualizes some example interactions between backend data and frontend

elements. The intended functionalities of these components are explored in more

detail in the User Guide.

1.1.1 Back End Architecture

The web application back end is built in Python using the Django web framework.

Django utilizes a MVT design pattern, consisting of model, view, and template com-

ponents. The model drives all logic regarding the data in the application. The

CYBEX-P web application’s model incorporates Neo4j graph-based databases to per-

sistently store user investigation data. The web application’s model also extends

Django’s built in user model (implemented using SQLite) for user authentication and

other user data. The application’s templates describe instructions for generating and



2

Figure 1.1: System context diagram illustrating the high-level structure of some of
the application’s interactions.

Adam Cassell
IOC Details

Adam Cassell
Descriptive



3

displaying both static and dynamic HTML output. Views represents the user inter-

face that is displayed in the web page. They are responsible for taking data from the

model and rendering it into templates. The views for this application are constructed

using a number of other technologies that are detailed later in the next section.

This application extends Django with the Django REST framework, which is

used to serve the RESTful API that the front end will make requests to. Anytime

frontend users perform an action that requires data to be queried, the back end

application is responsible for handling these requests. The back end may then need

to make subsequent requests to other services to gather the required data. This

includes third-party APIs like Whois, GeoIP, and more. These lookups power the

standard enrichments that are detailed in the user guide. Similar requests are made

to the CYBEX-P API for specialized enrichments that reveal threat contexts. Once

the Django application processes these data, it passes them back as responses to the

frontend so that the results can be interacted with.

As mentioned previously, the Neo4j graph database must also be communicated

with. Unlike the prior examples, this is not an API request to an external service.

The Neo4j database exists on the same server as the web application back end. This

database directly represents the data of the user’s current graph. Separate instances

of this database are isolated within Docker containers for each unique user. This

allows the application to save and persist every user’s graph data in between usage

sessions. Direct queries are made to the current user’s Neo4j database within their

corresponding container. These queries either modify the database or simply return

its current graph representation so that it can be processed and rendered in the web

application client. Figure 1.3 visualizes the architecture described in this section.

See Figure 1.2 for a summary of the web application’s position within the larger

CYBEX-P platform architecture.



4

Figure 1.2: System architecture diagram for the CYBEX-P platform.

1.1.2 Back End Deployment

The Django application is deployed on a web server that allows it to be accessed

publicly. The application is executed using a Gunicorn application server. This is

a HTTP web server gateway interface that allows the Django application to be run

as multiple concurrent python processes. Such a configuration is important because

several users may make requests to the system at the same time. A NGINX web

server is also used to put the Gunicorn process behind a reverse proxy. This allows

the application to be executed on the server’s localhost, disconnected from direct

outside requests. Instead, NGINX takes the responsibility of fielding requests from

clients, serving as a middleman that then directs requests to the local application.

This approach has multiple advantages, allowing load balancing of client requests and

increasing security for the backend services. Lastly, Supervisor is used to control and



5

monitor the Gunicorn process. This is used to start, stop, and reload the application.

Supervisor constantly monitors process status and can restart the application if it

crashes or if the server gets rebooted. A summary of the aforementioned deployment

details is depicted in Figure 1.3.

Figure 1.3: High-level architectural diagram for the CYBEX-P web application.

1.1.3 Front End

The frontend of the web application consists of two parts. The first is a homepage

that is rendered statically using HTML5/CSS. The homepage consists of mulitple

static HTML files that are served as a series of templates from the Django backend.

This site serves as an informational home for the CYBEX-P project, allows users to

sign in with their accounts, and acts as a portal to the main application

The majority of the front end is contained within the threat intelligence graph

application. This is a single-page React application built using ‘create-react-app’.



6

This means that rather than having several page links to di↵erent application views,

only one view is used. Components are the building blocks of the user interface that

form this single page. Components are defined by a collection of logic and visual

properties that together serve some functional purpose. For example, the navbar at

the top of the application facilitates a common set of actions, so it is designed as

a component. Within it, there can be multiple child components, such as the main

dropdown menu that is available to users. The navbar itself is a child of a master

component which contains the entire application. The combined functionalities of

these components are demonstrated in the user guide.

React can implement either class-based or functional components. The CYBEX-

P web application opts for functional components that conditionally render their

contents. This means that the UI will automatically and selectively render whenever

application states change. State is an important React concept that describes the data

components use. This data changes over time, and thus is referred to as ‘changing

state’. An example of a state variable could be the value of a dropdown, which changes

when the user selects a new choice. The UI or backend logic may be expected to react

or change according to this state change. Automatic rendering refers to the fact that

the programmer doesn’t define ‘how’ the components should visually update; rather,

they just define ‘what’ the UI should look like in di↵erent scenarios. Conditional

rendering means that UI will only re-render if state data it is directly attached to

changes. This is far more e�cient that re-rendering the entire page if just one value

in one sub-component gets updated.

With few exceptions, most components are custom-built rather than using o↵-

the-shelf component libraries. This includes writing custom JavaScript functions for

component logic, as well as defining custom CSS to achieve the desired visual design.

All project components are written using JSX, which extends standard JavaScript.

JSX is designed to be used declaratively to describe the desired appearance of the

UI. It can be thought of as incorporating HTML directly into JavaScript logic, and

can be incredibly e�cient for rapid UI iteration. All components in the CYBEX-P



7

web application are written in separate JSX files that isolate their respective logic

and styling. This pattern of development seeks to keep all aspects of components

localized. This is di↵erent than alternative methods which abstract styling and logic

away from the UI elements they describe. It is worth noting that React doesn’t

enforce any one particular design pattern (such as Model-View-Controller (MVC) or

Model-View-ViewModel (MVVM)); however, the general approaches described in this

section are standard best practice.

The central graph component is one of the more complex pieces of the application.

To help implement visual graph representations, the vis.js graphics library was used

as a foundation. In its default form, this library was not su�cient for achieving the

project’s usability goals. As a result, the threat-intelligence graph customized the

base functionality and appearance of this tool. The tailored integration of vis.js into

this application had several benefits. It allowed the backend data and frontend visuals

to have a one-to-one relationship, where data is represented in a graph data structure

in both the Neo4j database and React code. The result is e�cient visualization and

modification of graph data, with changes concurrently reflecting in users’ browsers

and the backend database.


	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	CYBEX-P Architecure & Deployment
	Software Architecture
	Back End Architecture
	Back End Deployment
	Front End


	Introduction
	Background
	Visual Analytics
	The Value of Data Visualization
	Survey of Visualization Methods for Complex Data
	Visual Analytics for Cybersecurity

	Collective Threat Intelligence and CYBEX-P
	Cyberthreat Intelligence
	Information Sharing and the CYBEX-P Platform

	Technologies

	Related Work
	Key Research in Cybersecurity Visualization
	Existing Works in Investigative Workflows

	Motivation and Overview of Proposed Solution
	Main Goals
	Intended Users
	Approach Outline

	CYBEX-P Web App User Guide
	Interface Overview
	Scenario A: Large Graph Construction
	Scenario B: Focused Threat Analysis

	User Study
	Objectives
	Experimental Setup
	Participants
	Apparatus
	Procedure
	Design
	Tasks

	Results
	Tests Conducted
	Findings
	Sample Comments from Participants

	Discussion
	Survey Insights
	Task Analysis

	Study Conclusions

	Conclusions and Future Work
	Summary of Contributions
	Future Work

	References

